
III~. J. Hrtrt Muss Trw,sfrr Vol 23, pp 1681-1683 
Pergamon Press Ltd 19RO. Printed m Great Britain 

c,, c,, constants used to fit p0 with a straight line; 

Cl, constant of integration; 

92 acceleration due to gravity [m s-‘1 ; 
Ga, Gay-Lussac number (l/BAT); 
K. permeability Cm*] ; 
1, thickness of the porous layer [m] ; 
M, molecular weight of the fluid ; 
p, dimensionless pressure; 

PO, reference pressure [kg ms-2] ; 
R, universal gas constant [j mole-’ K-l] ; 

Ra, 

R T, 
t, 
T, 
T .lllb 
u, 0, 

x, y, 

Rayleigh number 
[ 

K(P+PosWT 

PA, I; 

dimensionless lower wall temperature; 
dimensionless time; 
dimensionless temperature ; 
ambient temperature (300 K) 
dimensionless horizontal and vertical velocity 
components ; 
dimensionless horizontal and vertical 
coordinates. 
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NOMENCLATURE 

Greek symbols 

8, coefficient of thermal expansion [K- ‘1; 

4 porosity; 
I ‘0, thermal conductivity of the porous medium 

[Wm-‘K-l]; 

P, fluid viscosity [kg ms-‘1 ; 

P. dimensionless fluid density ; 

PO? reference fluid density [kg m-“1 ; 

(PC), heat capacity per unit volume of the porous 
medium [J me3 K-l]; 

(PC),. heat capacity per unit volume of fluid 
(J me3 K-l]. 

INTRODUCTION 

FOR A POROUS medium bounded by two isothermal im- 
permeable planes, Lapwood [l] predicted the criteria for the 
onset of convection. The transition Rayleigh number that he 
derived (4 n2) has been verified experimentally [2]. However, 
the mathematical formulation is simplified by the Boussinesq 
approximation which states that the fluid density differences 
are to be considered in the buoyancy terms only. Thus, a 
simple stream function can be defined. 

In this report, we present a different formulation which 
takes into account of all density variations for an ideal gas. 
The critical conditions for the transitions from conduction to 
convection are determined by a linear theory and agree 
remarkably well with previous work [3, 41. 

GOVERNING EQUATIONS 

Assuming that the porous layer is saturated with an ideal 
gas and considering the fluid density as variable, the system of 
equations which represents the phenomena is : 

(1) 

v = - J [VP - pg] 

(~c)~t(pc),V-VT=*,v~~ (3) 

p=g. 

Equations (l)-(4) are rendered dimensionless with the 
following reference parameters: p. for the fluid density, 
(pc)r2/I., for time, i.,/(pc), I for the velocities, Tamb for the 
temperature, I for length and P, for pressure. Inserting the 
ideal gas law into Darcy’s equation, the dimensionless, two 
dimensional system becomes : 

@ (PC) dP ap 
c-+- u-+fL’-+ C at (PC), ax &J 

(5) 

u=-%i/+~+T~]=O (6) 

“=F[pg+ T$]-RaGap (7) 

L?T dT dT d2T r7’T 
dt+u$-=i+mi. 

dp iix ?y 
(8) 

Three dimensionless parameters appear in the equations : 
(pc)/(pc),, K(pc),P,/&, and Ra Ga. When dealing with 
natural convection, the pressure gradients are caused by fluid 
density differences and thus we can assume that P, = pql. 
Equations (6)-(7) can then be written : 

u = - RaGa[pg+ T$] (6’) 

v=-RaGa 
c 

i?T cYp 
p-+T-+p dy dq’ 1 (7’) 

The boundary and initial conditions in dimensionless form 
are : 

T=R,; c=O fory=O 

T= 1; c=O fory=l 
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iT 
-=O; u=O forw=Oandu= l(9) 

(7x 

11 = I : T = 1 for r = 0. 

With the above formulation, the Ru Ga number instead of 
the Rayleigh number appears to be the critical parameter. 
Since the isothermal compressibility /I is equal to l/T for an 
ideal gas, a simple equation will enable us to deduce one from 
the other. 

LIVEAR STABILITI ANALYSIS 

The critical conditions for the transition from a motionless, 
pure conduction regime to steady convection are determined 
by a linear theory. 

The motionless reference state is independent of the lateral 
coordinate x and is defined by : 

U” = PO = 0 

T,=R,+(l-RT)y. 

Substitution into (7’) leads to 
where C, is a constant of integration determined by 

.i‘ 

g-i 
pody = 1. 

F=O 

In order to facilitate the method ofsolution that follows we 
approximate the curve p,, by a polynomial PO = Cty + C1. 
Notice that for RT = 2, the reference density distribution 
becomes p0 = 1. 

Introducing temperature 0, velocity u’, I:’ and density 
perturbations such that: 

T=T,+O 

11 = ug + u’ 
(10) 

!’ = v. + L.’ 

P = PO + P 

into the system of equations (5, 6’. 7’, 8) and neglecting all 
second terms we obtain : 

Assuming solutions, for the two equations above, of the 
form : 

p’ = p”(y) eiax t) = H”(y) e“’ 

and inserting them into the equations we obtain two differen- 
tial equations of the form 

I, d/j’ 
=z,p +(z,+ddy (13) 

[PJ + p*?' + PJ$ + [P&Y + P51;; 

[Pd + P;?’ + P81nw + [Pd + PIU.) + PI ,I$$ 

+ [P12!’ + P,dg + [PJ + P,5! + Plhl I”’ = 0 (14) 

where zi _6 and pi_16 are known constants. 
The two differential equations are solved by series: 

0” = i: a, 4’q p” = c h, y” 
“=O n-0 

The boundary conditions for the perturbations are: 

0”=0; v’=O fory=O andy=l. 

The linearized expression for r’, into which the series 
solutions for 0” and p” are substituted to satisfy the velocity 
conditions is 

II’= -RaGale+ l)p”+(I.‘~+po$+ T,,:]. 

A matrix ofcoefficients aa, a,, ., a. b,, b,, ., b, can thus be 
constructed from the recurrence relations and from the 
boundary conditions. Its determinant equals zero for the 
critical Ra Ga number. 

The first 26 terms of each series are sufficient to give a 
precise value (error less than 1%) for Ra Ga,. Table I shows, 
for different RT , the critical Ra Ga number. Using the average 
temperature in the layer F = T, + T,,,/2 to calculate fl, the 
critical Rayleigh number is deduced. 

With the exception of RT = 1.5, the critical Rayleigh 
numbers derived are slightly lower than 4 n2; the moderate 
density differences accounted for in all terms are responsible 
for this. As the temperature difference across the layer 
increases, the density gradients become more important and 
the critical Rayleigh number decreases. These results agree 
well with those of Epherre, Combarnous and Klarsfeld [3] 
who, using a different formulation considered both the 
density and the fluid viscosity variations in an anisotropic 
medium. For RT = 1.5, the value of Ra, is higher than 4 n’. 
This is due to the fact that the mixed mean temperature is 
higher than the average temperature once convective move- 
ment appears. Thus, the real Ra, numbers are a bit below our 
tabulated values. 

The solution of the two ordinary differential equations by 
series allows us to use a polynomial of any degree to 
approximate po( y). As R, increases, the curve po( y) is less well 
represented by a straight line. 

CONCLUSIONS 

A model for natural convection in a porous layer saturated 
with an ideal gas is presented. The fluid density differences are 
accounted for in all terms. The linear stability analysis leads 
us to two coupled ordinary differential equations which are 
solved by series. Due to the moderate density differences, the 
critical Rayleigh number obtained is slightly below 4 x2. As 
the imposed temperature gradient across the layer is in- 
creased, the critical Rayleigh number decreases. 
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Table 1 
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c2 Ra Ga, Ra 

1.5 
1.25 -’ 

1.5-0.5y 1 -0.4 1.2 101.68 40.672 

2 1 0 1 58.9267 39.284 

2.5 0.3031 0.8516 44.32 37.9X86 

3 0.5477 0.7340 37.2 37.2 

R, =&; T,,,= 300K; S = 3.15. 
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YOMENCLATURE 

imperfect mixing parameter: ratio of that fraction of 
the scraped layer which is well mixed with the core: 
vm/(vm + M); 

4 Ja& 
perfect scraping parameter: E K ; 

parameter including external heat transfer 
u 4 Ja8 

resistance ~ ~ c ; 
h,R n 

heat capacity [J/gK] ; 
heat transfer coefficient between external fluid 
(Bath) and wall ; 
theoretical scraped surface heat transfer coefficient: 
2k/Jna8, [W/m’K] ; 
thermal conductivity of mixture of fluid [W/mK] ; 
thermal conductivity of heat exchange wall 16.5 

[WimKl ; 
thickness of heat exchanger wall (1.01 mm); 
mass of scraped layer per scraping cycle [g] ; 
mass of central (mixed) core [g] : 
total number of scrapings (e/Q,); 
radius ofcylindrical scraped surface heat exchanger; 
overall heat transfer coefficient between external 
bath and scraped surface heat exchanger wall: 

average temperature of well mixed core material 

[“K]; 
wall or bath temperature [K] ; 
initial temperature of mixture system [I<). 

Greek symbols 

a, thermal diffusivity of mixture of fluid [m’js] ; 
4, thickness of residual film left by the scraper blade 

during imperfect scraping [m] ; 
6. scraped film thickness (scraper blade width) [m] ; 
Y. ratio of mass of intermediate mixing layer to scraped 

layer ; 
0. total time (no,) [s] ; 
0 c1 time between scrapings [s]. 

INTRODUCTION 

WE HAVE made an analysis [1,2] of scraped surface heat 
exchange [3-121 in a cylindrical batch vessel which extends 
the traditional suggestion of Houlton [13] to include the 
effects of imperfect scraping and incomplete mixing between 
the material removed by the scraping and the main body of 
the heated material. There is current interest in the process 
[14] because the increase in heat transfer by scraping can be 
obtained for less mechanical energy than that required by 
stirring or agitation with baffles when the material has a 
thermal conductivity less than 1 W/mK, even if it is not very 
viscous [15]. 

When the process is regarded as a sequence of contacts with 
the wall and subsequent perfect mixing with a well mixed 
core, one obtains the average dimensionless temperature of 
the layer for the nth scraping as 

T”+’ _ T” n 2k ./& 

T, - T” J(na)p~C, 
(1) 


